A compactness theorem for locally homogeneous spaces
نویسندگان
چکیده
We prove the existence and uniqueness of geometric models local isometry classes locally homogeneous spaces with sectional curvature $|\operatorname{sec}|\leq 1$. Moreover, we show that set is compact in pointed $\mathcal{C}^{1,\alpha}$-topology.
منابع مشابه
Diagonal Actions on Locally Homogeneous Spaces
Contents 1. Introduction 1 2. Ergodic theory: some background 4 3. Entropy of dynamical systems: some more background 6 4. Conditional Expectation and Martingale theorems 12 5. Countably generated σ-algebras and Conditional measures 14 6. Leaf-wise Measures, the construction 19 7. Leaf-wise Measures and entropy 37 8. The product structure 61 9. Invariant measures and entropy for higher rank sub...
متن کاملTb-theorem on non-homogeneous spaces
0 Introduction: main objects and results 3 0.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 0.2 An application of T1-heorem: electric intensity capacity . . . . . . . . . . . . 7 0.3 How to interpret Calderón–Zygmund operator T? . . . . . . . . . . . . . . . 9 0.3.1 Bilinear form is defined on Lipschitz functions . . . . . . . . . . . . . 10 0.3.2 Bilin...
متن کاملRiesz Type Theorem in Locally Convex Spaces
The present paper is concerned with some representatons of linear mappings of continuous functions into locally convex vector spaces, namely Theorem. If X is a complete Hausdorff locally convex vector space, then a general form of weakly compact mapping T : C[a, b] → X is of the form Tg = ∫ b a g(t)dx(t), where the function x(·) : [a, b] → X has a weakly compact semivariation on [a, b]. This th...
متن کاملVector ultrametric spaces and a fixed point theorem for correspondences
In this paper, vector ultrametric spaces are introduced and a fixed point theorem is given for correspondences. Our main result generalizes a known theorem in ordinary ultrametric spaces.
متن کاملA Compactness Theorem for Invariant Connections
It is well-known that the Palais-Smale Condition C does not hold for the YangMills functional on a principal bundle over a compact four-manifold. According to the Uhlenbeck weak compactness theorem, a Palais-Smale sequence will in general only have a subsequence that converges on the complement of a finite set of points. Moreover, even on the complement of these points, the convergence is not a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annali della Scuola normale superiore di Pisa. Classe di scienze
سال: 2021
ISSN: ['0391-173X', '2036-2145']
DOI: https://doi.org/10.2422/2036-2145.201912_001